Programme de khôlle n°16 : du 31/01 au 04/02


image_pdfimage_print

Chapitre OS6 – Les oscillateurs électriques et mécaniques en régime forcé

Questions de cours :

  • Établir l’équation différentielle vérifiée par un oscillateur masse-ressort vertical accroché à un plafond oscillant de position z_p(t) = a \cos\omega t. Après changement de variable, établir l’expression de l’amplitude complexe de la position de la masse.
  • Présenter la notation complexe d’un signal physique sinusoïdal (grandeur complexe, amplitude complexe). Préciser quelles opérations mathématiques sur l’amplitude complexe fournissent l’amplitude réelle, la phase. Rappeler enfin l’effet de la dérivation et l’intégration sur les grandeurs complexes.
  • En partant de l’expression de l’amplitude complexe de la tension aux bornes du condensateur d’un circuit RLC série \underline{U}_{\rm c, m} = \dfrac{ \omega_0^2 E_0}{(\omega_0^2-\omega^2) + j\dfrac{\omega \omega_0}{Q}}, établir l’expression de l’amplitude réelle et établir la condition sur le facteur de qualité Q d’existence d’une résonance en tension.
  • En partant de l’expression de l’amplitude complexe de l’oscillateur forcé \underline{U}_{\rm c, m} = \dfrac{ \omega_0^2 E_0}{(\omega_0^2-\omega^2) + j\dfrac{\omega \omega_0}{Q}}, étudier les cas où la pulsation est soit très inférieure, soit égale, soit très supérieure à la pulsation propre et calculer le déphasage associé dans ce cadre, et représenter l’allure du déphasage en fonction de la pulsation pour différentes valeurs de facteur de qualité.
  • Calculer le courant complexe dans un circuit RLC série à partir des impédances et établir l’existence d’une résonance et la pulsation de résonance en intensité.
  • Présenter l’analogie électromécanique entre le système masse-ressort et le circuit RLC par le biais d’exemples (forme d’équation en régime libre, grandeurs physique, régime forcé).
  • Établir et connaître l’impédance d’une résistance, d’un condensateur, d’une bobine en régime harmonique. Présenter leur modélisation à basse et haute fréquence.

Contenu :

  • Exercices d’électricité en régime forcé (avec équations différentielles et/ou impédances), et de mécanique (oscillateurs mécaniques en régime forcé).

Chapitre M3 – Approche énergétique du mouvement d’un point matériel

Questions de cours :

  • Puissance et travail d’une force. Exemple d’une force dont le vecteur est constant, puis dont la norme est constante.
  • Démonstration du théorème de l’énergie cinétique et application à la détermination de la vitesse obtenue après une chute libre d’un objet, sans vitesse initiale, d’une hauteur h.
  • Force conservative, énergie potentielle, et exemple de calcul au choix du khôlleur (gravitationnelle, rappel élastique, pesanteur à la surface terrestre).
  • Démonstration du théorème de l’énergie mécanique et détermination de l’équation différentielle du pendule simple.
  • Analyse du mouvement à l’aide d’un graphe d’énergie potentielle.
  • Position d’équilibre, stabilité, et approximation locale par un puits de potentiel harmonique.

Contenu :

  • Exercices d’utilisation pratique du théorème de l’énergie cinétique ou mécanique. Pas d’étude de graphes d’énergie potentielle ou de recherche de position d’équilibre.