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Questions de cours :

= Etablir I'équation différentielle vérifiée par un oscillateur masse-ressort vertical accroché 3 un plafond oscillant de
position zp(t) = a coswt. Aprés changement de variable, établir I'expression de I'amplitude complexe de la position
de la masse.

= Présenter la notation complexe d'un signal physique sinusoidal (grandeur complexe, amplitude complexe). Préciser
quelles opérations mathématiques sur I'amplitude complexe fournissent I'amplitude réelle, la phase. Rappeler enfin
I'effet de la dérivation et I'intégration sur les grandeurs complexes.

= En partant de I'expression de I'amplitude complexe de la tension aux bornes du condensateur d'un circuit RLC

2
série U, . = 0 R établir I'expression de I'amplitude réelle puis établir la condition sur le facteur
) 2 5 .
(wo —w?) +j——
de qualité Q d’'existence d'une résonance en tension.
, . , . o ) wi Eo o
= En partant de |'expression de I'amplitude complexe de l'oscillateur forcé U, = —————55-, étudier
=, 2 o . Wwo
(W() w2) +j

les cas ou la pulsation est soit trés inférieure, soit égale, soit trés supérieure a la pulsation propre et calculer le
déphasage associé dans ce cadre, et représenter |'allure du déphasage en fonction de la pulsation pour différentes
valeurs de facteur de qualité.

= Calculer le courant complexe dans un circuit RLC série a partir des impédances et établir I'existence d'une résonance
et la pulsation de résonance en intensité.

= Présenter |'analogie électromécanique entre le systéme masse-ressort et le circuit RLC par le biais d'exemples
(forme d’équation en régime libre, grandeurs physique, régime forcé).

= Etablir et connaitre I'impédance d'une résistance, d'un condensateur, d'une bobine en régime harmonique. Présenter
leur modélisation a basse et haute fréquence.

Capacités exigibles du BO :

= Relier I'acuité d'une résonance au facteur de qualité.
= Utiliser la représentation complexe pour étudier le régime forcé.

= A l'aide d'un outil de résolution numérique, mettre en évidence le role du facteur de qualité pour I'étude de la
résonance en élongation.

= Déterminer la pulsation propre et le facteur de qualité a partir de graphes expérimentaux d'amplitude et de phase.
= Etablir et citer I'impédance d'une résistance, d'un condensateur, d'une bobine.

= Remplacer une association série ou paralléle de deux impédances par une impédance équivalente.
Manipulations de cours :

= Résonance d'un systéme masse-ressort vertical dans |'air et dans I'eau.

= Animation associée :
http : //www.sciences.univ — nantes.fr/sites/genevieve_tulloue/Meca/Oscillateurs/ressort_rsf.php



Si cos(wt) est rem-
placée  par  e/¥?
en complexe, la
fonction sin  est
elle remplacée par
—jelt car sin(wt) =
cos (wt = g) soit

donc  sin(wt) Pt
o (Wt—%) _
E_j%Bth — _jejwt
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. Introduction mathématique

I.L1 Circuit RC en régime forcé

Considérons un circuit RC série soumis a un générateur de tension si- R
nusoidal de pulsation w e(t) = Egcos(wt). L'équation différentielle a

laquelle est soumise la tension aux bornes du condensateur s'obtient en i(t)
appliquant la loi des mailles et utilisant les relations constitutives :

d
e(t)zRi—Fu:RC'ditL—Fu

du
permettant d'écrire, en posant 7 = RC : T +u = Eycos(wt).

En partant d'un condensateur déchargé, on observe |'établissement d'un régime transitoire suivi d'un
régime permanent qui semble sinusoidal, et de méme pulsation que le générateur.

1.2 Résolution
t

Pour trouver la solution de I'équation homogeéne, on sait que up(t) = Ae 7. Pour la solution
particuliere, on va utiliser les notations complexes :

a) Utilisation des complexes pour la solution particuliére

En régime permanent, on cherche une solution particuliére de la méme forme que le second membre
avec la méme pulsation : u,(t) = Uy, cos(wt + ¢), ol Uy, est I'amplitude et ¢ le déphasage par rapport
au signal excitateur. Afin de déterminer assez facilement Uy, et ¢, on va utiliser des notations complexes.

Pour une grandeur sinusoidale de la forme f(t) = Fi, cos(wt+ ) est associée une grandeur complexe
notée f(t) telle que Re(f(t)) = f(t), soit donc

f(t) = Fmej(thrw) = f

ejwt
£ <m

(6.2)

ou fm = F,e7¥ est appelée I'amplitude complexe, contenant toute I'information désirée sur le régime
permanent (la pulsation étant connue).
Deux propriétés intéressantes concernent la dérivation et I'intégration :

df desvt ot o d .
] d—? = im T ]wimej‘*’ = jwf(t) : on remplace ainsi I'opérateur X par une multipli-
cation par jw;
1
= de la méme facon /f(t)dt = ...= —f(t) - on remplace 'opérateur | par une multiplication
J jwt
1
par —.
Jjw

b) Amplitude complexe

du .
On écrit tout d’'abord I'équation différentielle en complexes : Td—; +u = Epe’™t de sorte qu'en

reprenant la partie réelle, on retrouve |'équation initiale.
On utilise ensuite les propriétés sur la dérivation en complexe :

T X jwu, + u, = Epel*t «— (1 + jwT)u, = Eyelt (6.3)
On remplace enfin la solution particuliere dans I'équation différentielle : @p(t) = U,,ed@tte)
(14 jwr)Upe? @) = Egel*! <= (1 + jwr)Upme’? = Ey (6.4)
, , : ; Ey
Cela permet d’isoler I'amplitude complexe : U,, = Up,e?¥ = ———
1+ jwr
c) Amplitude
Pour obtenir I'amplitude réelle U,,, il suffit de calculer le module de I'amplitude complexe pré-
. E E
cédente : Uy, = |Unel?| = 0 = | 0| en utilisant les propriétés sur le module d’une
1+ jwr |1+ jwT|
E
fraction. Puis avec |a + jb| = va? + b2 et en considérant Ey > 0 :U,,, = ﬁ
+ (wt
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d) Déphasage
Pour obtenir le déphasage ¢, il convient de prendre |'argument de I'amplitude complexe :

Eq

m) = arg EO — arg(l + jWT) (65)

p =arg (Umej“") = arg <

. by .
en utilisant la propriété sur I'argument d'un quotient. Puis avec arg(a + jb) = arctan (7) sia>0:
a

» =0 — arctan(wT) (6.6)
e) Solutions
La solution générale s'écrit ainsi :
E E
u(t) = up(t) + up(t) = Ae T + ——2— cos(wt — arctan(wr 6.7
En utilisant les conditions initiales, on peut montrer que 0 = A + U,, cos ¢, et donc A = —U,,, cos .

Ainsi, dés que t > 7, la solution de I'équation homogeéne tend vers 0, et seule reste la
solution particuliere, c'est-a-dire que le systéme a « oublié » les conditions initiales, la solution en
régime permanent est celle qui perdure et est liée a la tension d'entrée (Ey) et la pulsation d'entrée w
ainsi que les caractéristiques du circuit, a savoir la constante de temps 7.

Une équation différentielle avec second membre sinusoidal admet une solution se décomposant
en deux parties :

= |a solution de I'équation homogéene, modélisant le régime transitoire, limité dans le temps
et tendant toujours vers 0;

= |a solution particuliére, correspondant a la solution en régime permanent, sinusoidale de
méme pulsation que le second membre, mais d'amplitude et de déphasage dépendant de
la pulsation.

Il. Oscillateurs amortis en régime sinusoidal forcé

1.1 Observations expérimentales

a) Introduction

Les oscillateurs, qu’ils soient électriques ou mécaniques, peuvent étre
soumis a des perturbations. Prenons I'exemple de I'expérience Virgo (Ita-  2=0 -f------cooo__.
lie) ou Ligo (Etats-Unis) ayant mis en évidence en 2015 les ondes gravi- z,-1- ¢
tationnelles. L'idée est d'utiliser des cavités dites Fabry-Pérot constituées
de deux miroirs en vis-a-vis suspendus dans le vide et distants de quelques
kilometres : au passage d'une onde gravitationnelle la distance entre les
miroirs va trés légerement varier. Malheureusement du fait des vibrations
du sol — entre autres — ces miroirs peuvent également se translater I'un
par rapport a |'autre, ce qui va avoir une influence sur la précision de
I'expérience.
On peut modéliser la situation en premiére approche comme une masse ‘
suspendue a un ressort, lui-méme accroché a un support d'altitude z,(t) #(1)-
susceptible de varier. On va chercher a déterminer quelles peuvent étre
les conséquences sur le mouvement de la masse.

A des fins de simplification, on va déja s'intéresser a ce qu'il se passe si la vibration du support suit
une évolution sinusoidale (on pourra ensuite généraliser a tout signal périodique un peu plus tard).

P 4

b) Régime transitoire et permanent
On enregistre au cours du temps la position de la masse, lorsque le support vibre de maniére
. .. N . w . .
sinusoidale a la fréquence f = or S on écrit donc z,(t) = acoswt avec ¢ > 0. On a mesuré au
s

préalable les propriétés de I'oscillateur amorti : sa fréquence propre est wy = 10,5rads™! et son facteur
de qualité vaut Q = 3. On observe alors le signal ci-dessous :
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C'est ce qui se passe
lorsqu'un enfant est
poussé sur une balan-
coire.

On constate ainsi un régime transitoire suivi d’'un régime permanent, mais cette fois-ci le régime
permanent n'est pas constant : le signal a la méme forme que le signal d' « entrée » (le signal excitateur),
a savoir une sinusoide ayant la méme fréquence f,, : seules I'amplitude et |a phase différent par rapport

Position (cm)

au signal d'entrée.

—_
o

ot

transitoire ! permanent

— (1)

WWWANWW W

0 2 4 6 8 10 12 14
Temps (s)

Régime forcé d’un oscillateur

En régime sinusoidal forcé et apres un régime transitoire, le régime permanent est sinusoi-
dal, de méme fréquence que I’excitation, mais d'amplitude et de déphasage a I'origine

différent. Ce résultat est indépendant des conditions initiales.

c) Influence de la fréquence

Faisons varier la fréquence du support et observons le régime permanent associé au mouvement de
la masse :

10

> ¢
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|w:11rads*1|

|w:22rads*1|
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Plusieurs phénomeénes sont a observer :

= 3 basses fréquences (pour w < wp), la masse suit le mouvement du plateau avec la méme

amplitude et sans déphasage : les variations d'altitude du support sont suffisamment lentes pour

que la masse suive le mouvement et le ressort est de longueur constante;

= pour une fréquence proche de la fréquence propre de |'oscillateur, I'amplitude du mouvement de
la masse passe de maniére surprenante par un maximum supérieur a I'amplitude de |'oscillateur :
il s'agit du phénoméne de résonance. On peut le comprendre qualitativement par le fait que si
on apporte de |I'énergie au bon moment, on peut amplifier le mouvement malgré la dissipation.

= 3 hautes fréquences (pour w > wyp), la masse n'oscille quasiment pas du fait de son inertie : elle
n'a pas le temps de suivre les modifications d'altitude du support, et seul le ressort se déforme.

On constate que les signaux sont quasiment en opposition de phase;

1.2 Mise en équation

a) Oscillateur mécanique

On considere que le ressort est accroché a un « plafond oscillant » dont la position varie sinusoida-
lement : z,(t) = acoswt. La masse m est toujours soumise aux mémes forces, seule la force de rappel

élastique est modifiée. Bilan des forces :
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= son poids P= mge,
» la force de rappel élastique F' = —k(£ — )& = —k(z(t) — zp(t) — lo)ez

. =g —
= |a force de frottements fluides F; = —av

L'application de la loi de la quantité de mouvement dans le référentiel du laboratoire supposé
galiléen, projetée selon e, nous permet d'aboutir a I'équation :

d?z dz
qui se réécrit :
A%z wodz mg
@Jranrng:wgacosthrwg (€o+7k ) (6.9)

Cette équation posséde un second membre avec une partie constante, et une partie sinusoidale
forcée. Pour pouvoir utiliser les notations complexes, on doit d'abord se débarrasser de la partie
constante : il suffit de changer de variable en posant Z(t) = z(t) — zcst OU zeq est la solution
particuliere de I'équation différentielle associée a la partie constante du second membre. En réalité,
il s’agit simplement de la position d'équilibre du systéme, en I'absence de forcage sinusoidal :

Zoq = Lo + % Ainsi en utilisant z(t) = Z(t) + zeq, il vient :

d?z dz
— %E + w2 Z(t) = wiacos(wt) (6.10)

b) Oscillateur électrique

On part d'un circuit RLC série, ot la tension aux bornes du générateur s'écrit e(t) = Eycoswt :
Appliquons la loi des mailles :

Qi
e(t) = ur(t) + ur(t) + uo(t) = Ri(t) + Ld—z + ue(t) (6.11)
soit avec la derniére relation courant-tension i(t) = C (;;C et en divisant |I'équation par LC :
d?u. R due 1 e(t)
- —uc(t) = =% 6.12
a2 " za et 1o (612)
soit en introduisant la pulsation propre et le facteur de qualité :
Pue  wo due
g + 0 @ + wiue(t) = wiEq cos wt (6.13)

On constate que les deux équations sont identiques, a condition de poser Ey = a et Z(t) = u.(t). On
va utiliser I'équation électrique par la suite.

1.3 Amplitude complexe

On recherche la solution en régime permanent de la forme u.(t) = U e/ @tH¢)

Chapitre OS6 - Les oscillateurs électriques et mécaniques en régime forcé
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d®ue  wo due ®u.  wo due o
@ tow + wiu(t) = wi Ey cos(wt) 7@ + ) T + wiuc(t) = wi Ege?™t  (6.14)
On utilise la propriété précédente sur la dérivation, sachant qu'une dérivée seconde est ainsi rem-
placée par la multiplication par (jw)? :
jww ;
ue(t) <(jw)2 12 0 ° + w?]) = wy Bpe! (6.15)
* .
soit en divisant par e/
Ucm (—oﬂ + ”go + w%) — W2E, (6.16)
L'amplitude complexe recherchée s'écrit donc
2
; FE
Qc,m = Uc,mejw = 5 “o =0 o (617)
(wg —w?) +i—~
Q
On peut alors déterminer I'amplitude et le déphasage Ucm, et ¢ :
» Ucm est le module de U, ,,,, soit
WEE WEE E
car |a+ jb| = % | Uem= 5 - Wy | — 3 20
va2+b2 (WO_M2)+]7 2 2\2 wwo w2 w 2
Q (wg —w?)2+ | — 1— =) +|=—
Q wg Quo
(6.18)
» ¢ est I'argument de u ., soit :
WEE Ww
p = arg 00 oo | = arg(wiEp) — arg ((w?J —w?) +370) (6.19)
(w§ —w?) + 35—~ Q
Q
2_ 2
= —argj <% — j(wd — wz)) = —g — arctan <Q(u';7w()w0)> (6.20)
On rappelle :
s w W
arg (%) = = —5 — arctanQ (w_o - f) (621)
arga — argb et
arg(a + jb) =

. 11.4 Formes des solutions
arctan { — | sia >0
a

Comme dans I'exemple du circuit RC, on a donc uc(t) = un(t) + Ue,m cos(wt + ¢), sachant que la
solution de I'équation homogene tend vers 0, on va plutdt étudier le comportement en fréquence de la
solution particuliére, ce qui permettra de justifier la présence d'un phénoméne de résonance.

I1l. Phénomeéene de résonance

111.1 Définition

Définition

Lorsqu'un systéme est soumis a une excitation sinusoidale, une ou plusieurs réponses (ten-
* | sion, intensité, déplacement, etc.) peuvent présenter un maximum pour une ou plusieurs
fréquences proches de leur fréquence propre : c'est le phénomeéne de résonance.

On rencontre le phénomeéne de résonance dans de nombreuses situations physiques (caisse de ré-
sonance d'un diapason, balancoire, laser, résonance magnétique nucléaire...). Les caractéristiques de
cette résonance peuvent souvent étre modélisés par un oscillateur amorti, comme nous allons le vérifier
a I'aide des deux systémes physiques étudiés précédemment : le circuit RLC série et la masse accrochée
a un ressort.
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I11.2 Résonance en élongation / tension

a) Recherche de la pulsation de résonance

On vient de voir que les équations associées a la position ou la tension aux bornes du condensateur
étaient identiques. Etudions I'influence de la pulsation d'excitation w sur I'amplitude du systéme, afin
de comprendre le phénomeéne de résonance observé expérimentalement.

, . w . o ) . ;.
Pour alléger les notations, posons © = — la pulsation réduite. L'amplitude vue précédemment se
wo
réécrit :
Ey

\/(1 —22)® 4 <g)2

Le phénomeéne de résonance se produit expérimentalement pour une pulsation proche de wq, avec une
amplitude maximale plus grande que FEj.
Cherchons donc la pulsation pour laquelle U, est maximale, et déterminons donc le minimum de

Ucm:

)

(6.22)

2
) . . €T oy
I'argument de la racine carrée. Posons f(z) = (1 — 2?)? + (—) et calculons sa dérivée :

Q

() =2 x (=2z) x (1 —2%) + 9t _ a1

9B — 2?) (6.23)

1
2092
s'annulant trivialement pour x = 0

1 1
* |, mais également pour z =z, = /1 — — a la condition que Q > — ~ 0,71.
g p \/ 50° que @ 7

On peut montrer qu'il s'agit bien d’un minimum pour f(x) car f/(z) > 0 pour > x, (donc
fonction croissante), et f/(x) < 0 pour < z, (donc fonction décroissante), donc la fonction
f(z) présente un minimum pour z = x,.

b) Analyse physique

Le tracé de Uem(x) ci-dessous, pour différentes valeurs du facteur de qualité, est cohérent avec ce
0

que I'on vient de montrer :

QOO
I
O W O

Figure 6.1 — Amplitude réduite —== en fonction de la pulsation réduite z = pour différentes
0 wo
valeurs du facteur de qualité @)
. . . N . U,
= pour w K wy x — 0, 'amplitude est identique a celle de I'excitateur, donc Em =1:
0

Remarquons que
z = 0 correspond
bien a un extremum
de Ucm, mais il
ne s'agit pas d'un
forcage sinusoidal vu
que w =0
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/ 1 / 1 N , ) N
= pourx =4/1— ﬁ etdoncw = wpy/1 — TQ? proche de wy, le systéme présente un phénomeéne

de résonance si le facteur de qualité vérifie Q > E et I'amplitude de I'oscillateur est supérieure
a celle de I'excitateur ;

= dans le cas ol Q > 3, Ugm(z:) ~ QEp : I'amplitude a résonance peut prendre des valeurs trés
supérieures a celle du forcage. On note également que z, ~ 1 c'est-a-dire que la pulsation de
résonance se rapproche de la pulsation propre. Enfin, la largeur du pic de résonance diminue a
mesure que le facteur de qualité augmente : la résonance est plus aigiie;

= 3 hautes fréquences, pour x > 1, I'amplitude décroit rapidement : l'inertie du condensateur
I'empéche de suivre les variations de tension aux bornes du générateur.

Pour le systéme mécanique, I'interprétation est trés similaire : a basse fréquence la masse suit le
déplacement du plafond, a haute fréquence I'inertie empéche la masse de suivre le mouvement, et il
existe également une résonance avec les mémes conditions que pour le systeme électrique.

Résonance en tension / position

En s'appuyant sur I'analogie électromécanique, il se produit un phénomene similaire dans un
circuit RLC série relié a un générateur basse fréquence avec une résonance en tension pour
la tension aux bornes du condensateur, et une résonance en position pour la position de la
masse dans le cadre d'un oscillateur amorti.

La résonance se produit pour Q > E pour une pulsation de résonance w, proche de la

pulsation propre wy. Elle est d'autant plus prononcée que le facteur de qualité est élevée, et pour
Q > 3w, >~ wy

c) Etude de la phase

On peut également tracer le déphasage en fonction de la pulsation pour différentes valeurs du
facteur de qualité. Cela confirme bien les observations sur le systéme masse-ressort : le mouvement est
en phase a basse fréquence, se retarde progressivement (car ¢ < 0), et finit en opposition de phase a
haute fréquence. A noter que la variation de phase autour de w = wy est d'autant plus grande que le
facteur de qualité est grand.

—50

—100

—150

. . . . P w ecs
Figure 6.2 — Déphasage en fonction de la pulsation réduite x = — pour différentes valeurs du
wo
facteur de qualité @

Notons aussi que le déphasage passe toujours par —m/2 quand & = 1, soit quand w = wy. Cela peut
en particulier étre un moyen de mesurer expérimentalement w, pour des valeurs de () inférieures a
3.

d) Etude asymptotique

Considérons les limites pour w < wp, w = wp et w > wyq afin de réexprimer I'amplitude complexe :
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Wo

= pour w < wy, Wi — w? —|—j? ~ w? donc :
2
E
* Uem = “32 C=FEy=Um=FEy et p=0 (6.24)
0

donc u.(t) ~ e(t) c'est-a-dire que la tension aux bornes du condensateur est identique a celle
du générateur;

9 Wwo Wi .
" pour w = wy, Wi —w?+j = j— donc:
0 Q UQ
W(Q)EO 3 ™
Ue = " =—JjQEy=Um=QE) et ¢= —3 (6.25)
j2
Q
d'ou le déphasage déja remarqué sur la figure 7.6 et I'amplitude en sortie peut prendre des
* valeurs trés supérieures a Ey si Q > 1 d’ou le phénomene potentiel de résonance ;
2 . Wo 2 :
= pour w > wy, wo—w +J ? ~ —w* donc :
2 2
CUOEO WO
qu ~ ) - Uc,m = EEO < Ey et p==7 (626)

donc la tension aux bornes du condensateur est en opposition de phase par rapport a celle
du générateur, et d'amplitude bien plus faible, synonyme d'une atténuation importante : le
condensateur ne suit plus les variations du générateur efficacement.

I11.3 Résonance en vitesse / courant

a) Expression des grandeurs associées

i) Vitesse
3 . ) . . . , dz
A partir de I'amplitude complexe de la position, on peut exprimer celle sur la vitesse. v(t) = T
doncv =jwZ, dou V, = jwZ,
: 2
waw, aw \%
* Vi == T -0 %Qw = R (6.27)
W+ (jw)? + j 2 —°+—] “1o14 Q(———O)
Q 0 w
. . Wwo ka
en divisant par j? et en posant V) = awpe@ = —.
@

ii) Intensité électrique

d
Au sein du circuit RLC série, i(t) = <Y, donc en complexe § = jwCu d'ot I, = jwU,, . Par

dt

conséquent on trouve de la méme facon :
1
I, = 0 - (6.28)
a2
wo w
E

en posant [y = fo

b) Etude de la résonance en intensité/ en vitesse

A partir de I'équation exprimant |'amplitude complexe du courant, on peut calculer I'amplitude de
I'intensité en régime permanent (mais le raisonnement serait identique pour la résonance en vitesse) :

I _ I
prae(G-2) a2y

- Eq w o
ou I'on pose Iy = 7 et © = — la pulsation réduite.
W

I = (6.29)

0
Sans faire de calcul de dérivée, le dénominateur posséde bien un minimum en x = 1 : en effet dans
la racine, on a une somme de deux termes positifs, et le deuxiéme s’annule uniquement en z = 1.
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Il vient donc que I'amplitude de I'intensité posséde quelle que soit la valeur de 2 un maximum pour
x = 1, c’est-a-dire que pour w = wy il y aura toujours une résonance en courant, illustrée ci-dessous :

1k
0.5
[
0
05 —— Q=011 Q=02—Q=01—Q =0.05
L I | | | | | | | |
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

u

I w
Figure 6.3 — Amplitude réduite de I'intensité —— en fonction de la pulsation réduite v = — pour

0 wo
différentes valeurs du facteur de qualité mécanique @

On constate ainsi que I"amplitude du courant est limitée a Iy, mais également que plus le facteur
de qualité est important, plus la résonance est aigiie, c'est-a-dire resserrée autour de w = wy. On

. Iy ) .
montre méme que la largeur du pic de résonance, pour I, = ﬁ vaut| Aw = — |, ce qui donne

Q

un sens physique complémentaire au facteur de qualité.

Figure 6.4 — Amplitude réduite du courant en fonction de la pulsation w pour Q = 3 et la largeur du
pic de résonance.

L'évolution de la vitesse de la masse en régime forcé passe toujours par un maximum en w = wy.
On parle de résonance en vitesse, la situation étant identique a la résonance en intensité d'un

G Zd z 2T Wo R .
circuit RLC série. La largeur de résonance vérifie Aw = 6 : le facteur de qualité mécanique

permet de caractériser |'acuité de la résonance.
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IV. Utilisation des impédances complexes en régime sinusoidal
forcé

IV.1 Notion d’'impédance électrique
a) Définition

En régime formé, on peut étudier les circuits électriques en introduisant une généralisation de la
notion de résistance.

On appelle impédance complexe d'un dipdle, notée Z, le rapport :

Z= (6.30)

1=, ]2

ol u est la tension (complexe) aux bornes de ce dipdle en régime forcé, et 4 le courant le
traversant. Elle s'exprime également en ohm.

b) Impédances des composants usuels

Pour une résistance, la relation u = Ri est inchangée lors du passage en notations complexes, donc

ZR:R

o du . . . .
; pour un condensateur, on a la relation i = CE' soit en notation complexe i = C'jwu

* —— » 1 . . di .
et donc I'impédance associée est | Zq = o ; de mé&me pour une bobine, avec u = L&, il
jCw

vient | Z;, = jLw

On peut effectuer comme pour des résistances des associations en série ou en dérivation suivant
les mémes relations :

= en série on somme les impédances : Z,, = g Z;;
i

= en dérivation on somme les inverses des impédances, encore appelées admittances :

1 1
Z :ZZ

Zeq

c) Comportement asymptotique des dipdles

Les impédances nous permettent d'en déduire le comportement aux « basses » et aux « hautes »
fréquences :

= pourw — 0, | Zg| — 400 et |[Zy,| — 0, correspondant a ce qui avait été énoncé au chapitre SP6
a savoir que le condensateur se comporte comme un interrupteur ouvert (ou une résistance de
valeur infinie), et la bobine comme un fil ;

= pourw — 400, |[Zc| — 0 et |Zy,| — 400, ce qui signifie que le condensateur se comporte comme
un fil aux hautes fréquences et la bobine comme un interrupteur ouvert.

IV.2 Retour au cas du circuit RLC série

On cherche a étudier le comportement du courant dans le circuit RLC série. Pour obtenir I'intensité
en régime forcé, il convient d’exprimer la tension aux bornes de la résistance. A |'aide de la formule du
pont diviseur de tension, elle vaut :

Ces derniéres affir-
mations peuvent se
comprendre qualita-
tivement : la bobine
n'autorise pas des
changements  d'in-
tensité trop rapides
dans la  branche
dans laquelle elle se
trouve, par des effets
inductifs, tandis que
le condensateur n'a
plus le temps de se
charger ou déchar-
ger et la tension
a ses bornes reste
constamment nulle.
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un(f) = Rift) = —— 22 (1) = R

e R+jLw+ ——

J jCw

En simplifiant par R et en posant i(t) = I, e/*!T¢ = [ eI“!, I'amplitude complexe de I'intensité
se réécrit

Epel*t (6.31)

€0
> 20
* L, = = L — (6.32)
R+jLw+—— | 145 (———0)
J ]Cw +‘]Q wo w
ou I'on utilise la définition de ) et wy déterminée précédemment : B _w et w? = 1 donc
0 P T QT 1o
L, 1
Qo = 790 = 7

Exercice
Déterminer par la méme méthode la tension aux bornes du condensateur et retrouver |'expression
obtenue grace a I'équation différentielle.
On applique a nouveau la relation du pont diviseur, mais aux bornes du condensateur :

1
A iCw w0
=C =L — 4+ jLw + R
jCw
conduisant a I'amplitude complexe :
2
E
Uppn = ——020 (6.34)

wwo
9 |
wy —w+J)——

Q

IV.3 Passage d’une équation complexe a une équation différentielle

En utilisant les impédances, on s'affranchit ici d'écrire une équation différentielle. Mais il est méme
possible de faire le travail inverse et de retrouver I'équation différentielle régie par i(t). Repartons de
I'équation complexe reliant i(t) et e(t). Il faut faire en sorte de n'avoir que des polyndmes en jw, et

éliminer les fractions : 0 @
. e(t jCwe(t
t) = — = — 6.35
i) R+ jLw+ 1 jRCw — LCw? + 1 (6.35)
jCw
soit encore
(LC(jw)? + jRCw + 1) i(t) = jCwe(t) (6.36)
puis, avec le fait que multiplier par jw revient a effectuer une dérivée temporelle :
*
d% di de
C’dt2+RCdt+; Cdt (6.37)
soit sous forme canonique :
d% = wodi 9 1de
=5 0 ZUEE = —— 6.38
w2 oa T T x (6.38)

La notation complexe peut donc étre un moyen commode pour déterminer une équation différentielle
a priori difficile a obtenir (plusieurs mailles, par exemple).
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6.1  Circuit RL en régime forcé

On considere un circuit RL série alimenté par une tension sinusoidale e(t) = E cos(wt).

1. Ecrire I'équation différentielle vérifiée par le courant traversant le circuit a partir de la loi des mailles.
2. A partir de I'équation différentielle, injecter la forme complexe pour obtenir i.
3. A partir d’une méthode faisant intervenir les impédances complexes, retrouver le résultat.

4. Donner la solution temporelle correspondant a cette solution complexe. On déterminera I'amplitude et le
déphasage. Commenter leur dépendance en fréquence.

6.2 Impédances équivalentes

1. Pour les circuits suivants, déterminer les impédances équivalentes (pour le circuit (c), considérer le dipéle
branché au générateur).

R
(L.
L
L, E —
(L.r) R c R
(a) (b) (o)

2. Pour le circuit de droite, quelle est la condition sur les valeurs des composants de sorte que le courant parcouru
dans R; soit en phase avec la tension aux bornes du générateur?

= 2) La condition de déphasage nul entre ¢ et e se répercute sur I'impédance équivalente & C, L et Ry. Cette impédance
équivalente doit étre réelle, donc la partie imaginaire est nulle.

6.3 Mesure des caractéristiques d’une bobine par équilibrage d’un pont

Pour déterminer les caractéristiques d'une bobine réelle, modélisée par I'associa-
tion série d’une inductance idéale L et d'une résistance r, on place celle-ci dans
une structure en pont alimentée par une tension sinusoidale.

1. Exprimer la tension complexe Uap qui s'applique aux bornes du voltmétre. e(t)TC

2. La capacité C du condensateur et la résistance R sont ajustables. On choisit
leur valeur de sorte a annuler la tension lue par le voltmetre. Déterminer
I'expression de I'inductance L et de la résistance r en fonction de R, C, R;
et Rs.

= 1) Utiliser un pont diviseur de tension pour trouver la tension aux bornes de Ry et aux bornes de R || C. Comment
obtient-on alors U ?

= 2) L'égalité de deux complexes revient a écrire |'égalité des parties réelles et des parties imaginaires respectives.

6.4  Circuit en régime sinusoidal

Considérons le montage ci-dessous, alimenté par une source de tension sinusoidale de fém e(t) = E,, cos(wt).
On note i(t) = I,, cos(wt + ¢) le courant circulant dans le condensateur de capacité C.
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{1
|
(@)

1. Déterminer I'expression complexe du courant 4.
2. En déduire I, et ¢.

3. Déterminer a partir de la question 1) I'équation différentielle sur i(t) et en déduire la pulsation propre et le
facteur de qualité.

= 1) Commencer par simplifier le circuit pour trouver la tension aux bornes de I'association R et C en paralléle. Puis utiliser
la loi d’'Ohm pour C'. Lorsqu'on emploie des impédances d'éléments en dérivation, il peut étre judicieux de faire apparaitre

I"admittance Xeq = —— afin de simplifier les calculs.
Loy

= 3) il faut faire apparaitre un polynéme d’ordre 2 en facteur de i et de méme (au maximum ordre 2) en facteur de e.

6.5 Etude de la suspension d’un véhicule

Dans le cadre d'un modele simplifié de suspension, on assimile le véhicule a un point matériel M (de masse
m = 350kg), posé sur un ressort dont |'autre extrémité R peut se déplacer le long d'une route horizontale ou d'une
route ondulée (par le biais d'une roue de rayon r = 35cm). Le ressort a une constante de raideur k = 1,29-10* Nm~1!
et une longueur ¢y = 40cm a vide.

2z, (%)

0

On repére les positions de M et R par leur altitude zp; et zgr selon un axe vertical (Oz) tel que zgp = r
lorsque la route est horizontale. On note enfin zg(¢) I'altitude du sol, initialement nulle. Enfin, on modélise |'effet
de I'amortisseur par un frottement fluide entre les points M et R dont la force résultante sur la masse m est

2 dzm dZR) —
F,=— _ = k _1_
d « ( q T e, avec o = 700 kgs

1. Lorsque le véhicule se déplace sur la route horizontale (avec zg(t) = 0), déterminer la position a I'équilibre
ZM,eq €N fonction de m, g, k, o et 7.

2. Le véhicule rencontre une marche de hauteur h = 10cm (ainsi zg(t) = +h), on suppose que la longueur de
I’amortisseur est instantanément réduite de la longueur h, et la masse m posséde a t = 0T une vitesse verticale
nulle. Déterminer la forme générale de la loi d'évolution de zp;(t) et le nombre d'oscillations observées. Tracer
I'allure de zp/(2).

3. Le profil de la route est maintenant une route bosselée modélisée par une courbe sinusoidale de période spatiale
A =5,0m et d'amplitude H = 5cm. La voiture roule a vitesse constante v,. On pose Z(t) = z2m — 2M,eq-

(a) Justifier que I'on puisse écrire z5(z) = H cos (;:y) avec x |'abscisse du point M. Exprimer z; en

fonction du temps et non plus de x et en déduire la pulsation w associée en fonction de la vitesse
horizontale v, du véhicule.
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(b) Montrer que Z(t) vérifie une équation différentielle de la forme

27  wdZ

C 28002 L 270t = F(t

@ g a A=)
ol F(t) dépend de zs.

(c) On peut montrer que F(t) s'écrit, par un bon choix de I'origine des temps, sous la forme F(t) =
F,, cos(wt). Justifier que la vitesse v d'oscillation verticale de la voiture est également sinusoidale de
méme pulsation que F'.

(d) Montrer alors que son amplitude V;,, vérifie

Vi = 0 (6.39)

Vi
(e) On pose H = ot Tracer I'allure de H en fonction de & = .
m wo

(f) Calculer la vitesse associée a la pulsation w = wy et préciser s'il vaut mieux rouler vite ou lentement sur
ce type de chemin.

= 1) Controler les signes au regard de ce qui est attendu physiquement
= 2) Bien obtenir I'équation différentielle et identifier wo et @ et les calculer numériquement pour connaitre le type de
régime.

TV

= 3) (a) On trouve w = 2

et zs(t) = H cos(wt).

= 3) (b) Aprés changement de variable on aboutit & Z + %Z +wiZ = wizs + %ZS.

1. A I'équilibre, on étudie la masse M dans le référentiel de la route supposé galiléen. Les forces en présence sont
uniquement le poids et la force de rappel élastique. On applique la LQM a I'équilibre :

1_5 + j‘g = 6 — —mg + k(zM,cq — ZR,eq — Eo) =0<= ZM,eq = bo+1— % (640)

2. On cherche a décrire ici la réponse a un équivalent d'échelon de tension pour cet oscillateur mécanique amorti. On écrit
donc I'équation différentielle associée a la position de la masse M. On réécrit la LQM dans ces nouvelles conditions :
dp

dt

dt dt

dZM dZR )

—md=D+F+ I?d = mim = —mg — k(zm — 2r — lo) — @ < (6.41)

soit avec zgr = r + h aprés avoir monté la marche, on peut réécrire I'équation précédente sous forme canonique :

ZM+EZM+fZM = — <£0+T+h* @> (642)
m m m k
k mwo
On peut donc poser wp = {/ — et Q = ——.
m a

La forme générale de la loi d’évolution de zn(t) s'écrit donc :

2m(t) = Ae T cos(U 4 @) + 2aeq + b (6.43)

2
de résoudre I'équation, mais au moins de respecter les conditions aux limites pour effectuer un tracé. On précise que

I'amortisseur a une altitude instantanément réduite de h, donc zm(t = 0F) = 2m(t = 07 )2m,eq (I'inertie liée au
déplacement horizontal d'une masse importante implique la continuité de I'altitude du véhicule, mais pas de la roue) et
Zm(t = 0*) = 0 car on précise que la vitesse verticale est nulle. On calcule wy = 6,1 rad s!et @ = 3,03 donc 2 >~ wp
et le nombre d’oscillation est d’environ 3.

w 1 N . « o , P
avec jo = et Q= woy/1— @ (que I'on retrouve a partir du polyndme caractéristique). Il n'est pas demandé

D’ou I'allure suivante, avec une tangente horizontale
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(a)

(b)

(c)
(d)

44

zm (cm)

4 | | |
3 0 1 2 3 4

Temps (s)

2
zs(x) = H cos(kz) = H cos (ﬂ> est la forme classique d'un signal sinusoidal de période spatiale A. Or, la

A
vitesse est v,, constante, donc z(t) = v,t d’ou :

2TV,
A

2s(t) = Hcoswt avec w =

Ecrivons de nouveau la LQM projetée suivant |'axe vertical, mais en considérant que zg = r + 2z :

mféM = —mg — k(ZM — ZR — fo) — a(é’M — é’R)
soit en réorganisant les termes et sous forme canonique :

. wo 2 2 mg 2 W
ZM + —2ZM + wpaM = W) <7" +lo— — ) +whzs + —

Q k Q

En posant Z(t) = z2m — 2M,eq, ON élimine la partie constante du membre de droite, d'ol :

Zs

7 + 602 +w(2JZ = wgzs + 6025 = F(t)

(6.44)

(6.45)

(6.46)

(6.47)

La position Z est, en régime sinusoidal forcé, sinusoidale de méme pulsation que le forcage F'(t), donc de pulsation

w. Puis avec v = 2m = Z, la vitesse est également sinusoidale de pulsation w.

On passe I'équation précédente en notations complexes, sachant que v = Z donc V= jwZ, :

; |4
<_w2+j% +w(2]>Z:Fm€]wt — (_WQ"F]'%JFW(Q)) = = Fn

donc en isolant V  puis en prenant le module :

Fn@Q
V o Frn o wo
VYom — 2 LW .~ WO
o Lo LW 14 jQ— —jQ—
]OJ+ Q + jw wo w
d'ol :
FnQ
Q

dont I'allure graphique est donnée ci-apres.
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woA - _ . . . . .
(f) va0 = 2(—] =49ms* = 18kmh~'. Il vaut donc mieux soit plus lentement, soit plus vite que cette vitesse.

™
Techniquement, il est difficile de rouler vraiment plus lentement, on a tout intérét a avoir v, > v, 0 d'aprés le
graphique de H.
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