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Questions de cours :
• Établir l’équation différentielle vérifiée par un oscillateur masse-ressort vertical accroché à un plafond oscillant de

position zp(t) = a cosωt. Après changement de variable, établir l’expression de l’amplitude complexe de la position
de la masse.

• Présenter la notation complexe d’un signal physique sinusoïdal (grandeur complexe, amplitude complexe). Préciser
quelles opérations mathématiques sur l’amplitude complexe fournissent l’amplitude réelle, la phase. Rappeler enfin
l’effet de la dérivation et l’intégration sur les grandeurs complexes.

• En partant de l’expression de l’amplitude complexe de la tension aux bornes du condensateur d’un circuit RLC

série Uc,m =
ω2

0E0

(ω2
0 − ω2) + j

ωω0

Q

, établir l’expression de l’amplitude réelle puis établir la condition sur le facteur

de qualité Q d’existence d’une résonance en tension.

• En partant de l’expression de l’amplitude complexe de l’oscillateur forcé Uc,m =
ω2

0E0

(ω2
0 − ω2) + j

ωω0

Q

, étudier

les cas où la pulsation est soit très inférieure, soit égale, soit très supérieure à la pulsation propre et calculer le
déphasage associé dans ce cadre, et représenter l’allure du déphasage en fonction de la pulsation pour différentes
valeurs de facteur de qualité.

• Calculer le courant complexe dans un circuit RLC série à partir des impédances et établir l’existence d’une résonance
et la pulsation de résonance en intensité.

• Présenter l’analogie électromécanique entre le système masse-ressort et le circuit RLC par le biais d’exemples
(forme d’équation en régime libre, grandeurs physique, régime forcé).

• Établir et connaître l’impédance d’une résistance, d’un condensateur, d’une bobine en régime harmonique. Présenter
leur modélisation à basse et haute fréquence.

Capacités exigibles du BO :
• Relier l’acuité d’une résonance au facteur de qualité.
• Utiliser la représentation complexe pour étudier le régime forcé.
• À l’aide d’un outil de résolution numérique, mettre en évidence le rôle du facteur de qualité pour l’étude de la

résonance en élongation.
• Déterminer la pulsation propre et le facteur de qualité à partir de graphes expérimentaux d’amplitude et de phase.
• Établir et citer l’impédance d’une résistance, d’un condensateur, d’une bobine.
• Remplacer une association série ou parallèle de deux impédances par une impédance équivalente.
Manipulations de cours :
• Résonance d’un système masse-ressort vertical dans l’air et dans l’eau.
• Animation associée :

http : //www.sciences.univ− nantes.fr/sites/genevieve_tulloue/Meca/Oscillateurs/ressort_rsf.php
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I. Introduction mathématique

I.1 Circuit RC en régime forcé
Considérons un circuit RC série soumis à un générateur de tension si-
nusoïdal de pulsation ω e(t) = E0 cos(ωt). L’équation différentielle à
laquelle est soumise la tension aux bornes du condensateur s’obtient en
appliquant la loi des mailles et utilisant les relations constitutives :

e(t) = Ri+ u = RC
du
dt + u (6.1)

e(t)

i(t)

R

C u(t)

permettant d’écrire, en posant τ = RC : τ du
dt + u = E0 cos(ωt).

En partant d’un condensateur déchargé, on observe l’établissement d’un régime transitoire suivi d’un
régime permanent qui semble sinusoïdal, et de même pulsation que le générateur.

I.2 Résolution

Pour trouver la solution de l’équation homogène, on sait que uh(t) = Ae
−
t

τ . Pour la solution
particulière, on va utiliser les notations complexes :

a) Utilisation des complexes pour la solution particulière
En régime permanent, on cherche une solution particulière de la même forme que le second membre

avec la même pulsation : up(t) = Um cos(ωt+ϕ), où Um est l’amplitude et ϕ le déphasage par rapport
au signal excitateur. Afin de déterminer assez facilement Um et ϕ, on va utiliser des notations complexes.

Pour une grandeur sinusoïdale de la forme f(t) = Fm cos(ωt+ϕ) est associée une grandeur complexe
notée f(t) telle que Re(f(t)) = f(t), soit donc

f(t) = Fme
j(ωt+ϕ) = fme

jωt (6.2)

où fm = Fme
jϕ est appelée l’amplitude complexe, contenant toute l’information désirée sur le régime

permanent (la pulsation étant connue).
Deux propriétés intéressantes concernent la dérivation et l’intégration :

*

•
df
dt = fm

dejωt

dt = jωfme
jωt = jωf(t) : on remplace ainsi l’opérateur d

dt par une multipli-
cation par jω ;

• de la même façon
�
f(t)dt = . . . = 1

jω
f(t) : on remplace l’opérateur

�
par une multiplication

par 1
jω

.

Si cos(ωt) est rem-
placée par ejωt

en complexe, la
fonction sin est
elle remplacée par
−jejωt car sin(ωt) =
cos
(
ωt− π

2

)
soit

donc sin(ωt) →
C

ej(ωt−π
2 ) =

e−j π
2 ejωt = −jejωt

b) Amplitude complexe

*

On écrit tout d’abord l’équation différentielle en complexes : τ du
dt + u = E0e

jωt de sorte qu’en
reprenant la partie réelle, on retrouve l’équation initiale.
On utilise ensuite les propriétés sur la dérivation en complexe :

τ × jωup + up = E0e
jωt ⇐⇒ (1 + jωτ)up = E0e

jωt (6.3)

On remplace enfin la solution particulière dans l’équation différentielle : up(t) = Ume
j(ωt+ϕ) :

(1 + jωτ)Ume
j(ωt+ϕ) = E0e

jωt ⇐⇒ (1 + jωτ)Ume
jϕ = E0 (6.4)

Cela permet d’isoler l’amplitude complexe : Um = Ume
jϕ = E0

1 + jωτ

c) Amplitude
Pour obtenir l’amplitude réelle Um, il suffit de calculer le module de l’amplitude complexe pré-

cédente : Um =
∣∣Ume

jϕ
∣∣ =

∣∣∣∣ E0

1 + jωτ

∣∣∣∣ = |E0|
|1 + jωτ |

en utilisant les propriétés sur le module d’une

fraction. Puis avec |a+ jb| =
√
a2 + b2 et en considérant E0 > 0 :Um = E0√

1 + (ωτ)2
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d) Déphasage
Pour obtenir le déphasage ϕ, il convient de prendre l’argument de l’amplitude complexe :

ϕ = arg
(
Ume

jϕ
)

= arg
Å

E0

1 + jωτ

ã
= argE0 − arg(1 + jωτ) (6.5)

en utilisant la propriété sur l’argument d’un quotient. Puis avec arg(a+ jb) = arctan
Å
b

a

ã
si a > 0 :

ϕ = 0− arctan(ωτ) (6.6)

e) Solutions
La solution générale s’écrit ainsi :

u(t) = uh(t) + up(t) = Ae
−
t

τ + E0√
1 + ω2τ2

cos(ωt− arctan(ωτ)) (6.7)

En utilisant les conditions initiales, on peut montrer que 0 = A+ Um cosϕ, et donc A = −Um cosϕ.
Ainsi, dès que t � τ , la solution de l’équation homogène tend vers 0, et seule reste la

solution particulière, c’est-à-dire que le système a « oublié » les conditions initiales, la solution en
régime permanent est celle qui perdure et est liée à la tension d’entrée (E0) et la pulsation d’entrée ω
ainsi que les caractéristiques du circuit, à savoir la constante de temps τ .

À retenir

Une équation différentielle avec second membre sinusoïdal admet une solution se décomposant
en deux parties :

• la solution de l’équation homogène, modélisant le régime transitoire, limité dans le temps
et tendant toujours vers 0 ;

• la solution particulière, correspondant à la solution en régime permanent, sinusoïdale de
même pulsation que le second membre, mais d’amplitude et de déphasage dépendant de
la pulsation.

II. Oscillateurs amortis en régime sinusoïdal forcé

II.1 Observations expérimentales
a) Introduction

Les oscillateurs, qu’ils soient électriques ou mécaniques, peuvent être
soumis à des perturbations. Prenons l’exemple de l’expérience Virgo (Ita-
lie) ou Ligo (États-Unis) ayant mis en évidence en 2015 les ondes gravi-
tationnelles. L’idée est d’utiliser des cavités dites Fabry-Pérot constituées
de deux miroirs en vis-à-vis suspendus dans le vide et distants de quelques
kilomètres : au passage d’une onde gravitationnelle la distance entre les
miroirs va très légèrement varier. Malheureusement du fait des vibrations
du sol – entre autres – ces miroirs peuvent également se translater l’un
par rapport à l’autre, ce qui va avoir une influence sur la précision de
l’expérience.
On peut modéliser la situation en première approche comme une masse
suspendue à un ressort, lui-même accroché à un support d’altitude zp(t)
susceptible de varier. On va chercher à déterminer quelles peuvent être
les conséquences sur le mouvement de la masse.

z

z=0

z(t) M

zP

À des fins de simplification, on va déjà s’intéresser à ce qu’il se passe si la vibration du support suit
une évolution sinusoïdale (on pourra ensuite généraliser à tout signal périodique un peu plus tard).

b) Régime transitoire et permanent
On enregistre au cours du temps la position de la masse, lorsque le support vibre de manière

sinusoïdale à la fréquence f = ω

2π : on écrit donc zp(t) = a cosωt avec a > 0. On a mesuré au
préalable les propriétés de l’oscillateur amorti : sa fréquence propre est ω0 = 10,5 rad s−1 et son facteur
de qualité vaut Q = 3. On observe alors le signal ci-dessous :
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On constate ainsi un régime transitoire suivi d’un régime permanent, mais cette fois-ci le régime
permanent n’est pas constant : le signal a la même forme que le signal d’ « entrée » (le signal excitateur),
à savoir une sinusoïde ayant la même fréquence fp : seules l’amplitude et la phase diffèrent par rapport
au signal d’entrée.

Régime forcé d’un oscillateur

En régime sinusoïdal forcé et après un régime transitoire, le régime permanent est sinusoï-
dal, de même fréquence que l’excitation, mais d’amplitude et de déphasage à l’origine
différent. Ce résultat est indépendant des conditions initiales.

c) Influence de la fréquence
Faisons varier la fréquence du support et observons le régime permanent associé au mouvement de

la masse :

0

10

ω = 2 rad s−1 ω = 8 rad s−1 ω = 11 rad s−1 ω = 22 rad s−1

Temps (s)

Plusieurs phénomènes sont à observer :

• à basses fréquences (pour ω < ω0), la masse suit le mouvement du plateau avec la même
amplitude et sans déphasage : les variations d’altitude du support sont suffisamment lentes pour
que la masse suive le mouvement et le ressort est de longueur constante ;

• pour une fréquence proche de la fréquence propre de l’oscillateur, l’amplitude du mouvement de
la masse passe de manière surprenante par un maximum supérieur à l’amplitude de l’oscillateur :
il s’agit du phénomène de résonance. On peut le comprendre qualitativement par le fait que si
on apporte de l’énergie au bon moment, on peut amplifier le mouvement malgré la dissipation.

C’est ce qui se passe
lorsqu’un enfant est
poussé sur une balan-
çoire. • à hautes fréquences (pour ω > ω0), la masse n’oscille quasiment pas du fait de son inertie : elle

n’a pas le temps de suivre les modifications d’altitude du support, et seul le ressort se déforme.
On constate que les signaux sont quasiment en opposition de phase ;

II.2 Mise en équation
a) Oscillateur mécanique

On considère que le ressort est accroché à un « plafond oscillant » dont la position varie sinusoïda-
lement : zp(t) = a cosωt. La masse m est toujours soumise aux mêmes forces, seule la force de rappel
élastique est modifiée. Bilan des forces :
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*

• son poids #»

P = mg #»ez

• la force de rappel élastique #»

F = −k(`− `0) #»ez = −k(z(t)− zp(t)− `0) #»ez

• la force de frottements fluides #»

Ff = −α #»v

L’application de la loi de la quantité de mouvement dans le référentiel du laboratoire supposé
galiléen, projetée selon #»ez nous permet d’aboutir à l’équation :

m
d2z

dt2 + α
dz
dt + k(z(t)− zp(t)− `0) = mg (6.8)

qui se réécrit :
d2z

dt2 + ω0

Q

dz
dt + ω2

0z = ω2
0a cosωt+ ω2

0

(
`0 + mg

k

)
(6.9)

Cette équation possède un second membre avec une partie constante, et une partie sinusoïdale
forcée. Pour pouvoir utiliser les notations complexes, on doit d’abord se débarrasser de la partie
constante : il suffit de changer de variable en posant Z(t) = z(t) − zcst où zeq est la solution
particulière de l’équation différentielle associée à la partie constante du second membre. En réalité,
il s’agit simplement de la position d’équilibre du système, en l’absence de forçage sinusoïdal :
zeq = `0 + mg

k
. Ainsi en utilisant z(t) = Z(t) + zeq, il vient :

d2Z

dt2 + ω0

Q

dZ
dt + ω2

0Z(t) = ω2
0a cos(ωt) (6.10)

b) Oscillateur électrique

e(t)

i(t)

R L

C uc(t)

On part d’un circuit RLC série, où la tension aux bornes du générateur s’écrit e(t) = E0 cosωt :
Appliquons la loi des mailles :

e(t) = uR(t) + uL(t) + uc(t) = Ri(t) + L
di
dt + uc(t) (6.11)

soit avec la dernière relation courant-tension i(t) = C
duc

dt et en divisant l’équation par LC :

d2uc

dt2 + R

L

duc

dt + 1
LC

uc(t) = e(t)
LC

(6.12)

soit en introduisant la pulsation propre et le facteur de qualité :

d2uc

dt2 + ω0

Q

duc

dt + ω2
0uc(t) = ω2

0E0 cosωt (6.13)

On constate que les deux équations sont identiques, à condition de poser E0 = a et Z(t) = uc(t). On
va utiliser l’équation électrique par la suite.

II.3 Amplitude complexe

On recherche la solution en régime permanent de la forme uc(t) = Uc,me
j(ωt+ϕ) :
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*

d2uc

dt2 + ω0

Q

duc

dt + ω2
0uc(t) = ω2

0E0 cos(ωt)→
C

d2uc

dt2 + ω0

Q

duc

dt + ω2
0uc(t) = ω2

0E0e
jωt (6.14)

On utilise la propriété précédente sur la dérivation, sachant qu’une dérivée seconde est ainsi rem-
placée par la multiplication par (jω)2 :

uc(t)
Å

(jω)2 + jωω0

Q
+ ω2

0

ã
= ω2

0E0e
jωt (6.15)

soit en divisant par ejωt

U c,m

Å
−ω2 + jωω0

Q
+ ω2

0

ã
= ω2

0E0 (6.16)

L’amplitude complexe recherchée s’écrit donc

U c,m = uc,me
jϕ = ω2

0E0

(ω2
0 − ω2) + j

ωω0

Q

(6.17)

On peut alors déterminer l’amplitude et le déphasage Uc,m et ϕ :

• Uc,m est le module de U c,m, soit

* Uc,m =

∣∣∣∣∣∣∣
ω2

0E0

(ω2
0 − ω2) + j

ωω0

Q

∣∣∣∣∣∣∣ = ω2
0E0 

(ω2
0 − ω2)2 +

Å
ωω0

Q

ã2
= E0√Å

1− ω2

ω2
0

ã2

+
Å

ω

Qω0

ã2

(6.18)

car |a+ jb| =√
a2 + b2

• ϕ est l’argument de uc,m, soit :

ϕ = arg

Ö
ω2

0E0

(ω2
0 − ω2) + j

ωω0

Q

è
= arg(ω2

0E0)− arg
Å

(ω2
0 − ω2) + j

ωω0

Q

ã
= − arg j

Å
ωω0

Q
− j(ω2

0 − ω2)
ã

= −π2 − arctan
Å
Q(ω2 − ω2

0)
ωω0

ã
= −π2 − arctanQ

Å
ω

ω0
− ω0

ω

ã
(6.19)

(6.20)

(6.21)
On rappelle :
arg
(a
b

)
=

arg a − arg b et
arg(a + jb) =

arctan
Å
b

a

ã
si a > 0 II.4 Formes des solutions

Comme dans l’exemple du circuit RC, on a donc uc(t) = uh(t) + Uc,m cos(ωt+ ϕ), sachant que la
solution de l’équation homogène tend vers 0, on va plutôt étudier le comportement en fréquence de la
solution particulière, ce qui permettra de justifier la présence d’un phénomène de résonance.

III. Phénomène de résonance

III.1 Définition

Définition

*
Lorsqu’un système est soumis à une excitation sinusoïdale, une ou plusieurs réponses (ten-
sion, intensité, déplacement, etc.) peuvent présenter un maximum pour une ou plusieurs
fréquences proches de leur fréquence propre : c’est le phénomène de résonance.

On rencontre le phénomène de résonance dans de nombreuses situations physiques (caisse de ré-
sonance d’un diapason, balançoire, laser, résonance magnétique nucléaire...). Les caractéristiques de
cette résonance peuvent souvent être modélisés par un oscillateur amorti, comme nous allons le vérifier
à l’aide des deux systèmes physiques étudiés précédemment : le circuit RLC série et la masse accrochée
à un ressort.
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III.2 Résonance en élongation / tension
a) Recherche de la pulsation de résonance

On vient de voir que les équations associées à la position ou la tension aux bornes du condensateur
étaient identiques. Étudions l’influence de la pulsation d’excitation ω sur l’amplitude du système, afin
de comprendre le phénomène de résonance observé expérimentalement.

Pour alléger les notations, posons x = ω

ω0
la pulsation réduite. L’amplitude vue précédemment se

réécrit :
Uc,m = E0 

(1− x2)2 +
Å
x

Q

ã2
(6.22)

Le phénomène de résonance se produit expérimentalement pour une pulsation proche de ω0, avec une
amplitude maximale plus grande que E0.

*

Cherchons donc la pulsation pour laquelle Uc,m est maximale, et déterminons donc le minimum de

l’argument de la racine carrée. Posons f(x) = (1− x2)2 +
Å
x

Q

ã2
et calculons sa dérivée :

f ′(x) = 2× (−2x)× (1− x2) + 2 x

Q2 = −4x(1− 1
2Q2 − x

2) (6.23)

s’annulant trivialement pour x = 0

Remarquons que
x = 0 correspond
bien à un extremum
de Uc,m, mais il
ne s’agit pas d’un
forçage sinusoïdal vu
que ω = 0

* , mais également pour x = xr =
…

1− 1
2Q2 à la condition que Q ≥ 1√

2
' 0,71.

On peut montrer qu’il s’agit bien d’un minimum pour f(x) car f ′(x) > 0 pour x > xr (donc
fonction croissante), et f ′(x) < 0 pour x < xr (donc fonction décroissante), donc la fonction
f(x) présente un minimum pour x = xr.

b) Analyse physique

Le tracé de Uc,m(x)
E0

ci-dessous, pour différentes valeurs du facteur de qualité, est cohérent avec ce
que l’on vient de montrer :

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

1

2

3

4

5

6

x

U
c,

m

E
0

Q = 6
Q = 3
Q = 2
Q = 1
Q = 0.71
Q = 0.2
Q = 0.1
Q = 0.05

Figure 6.1 – Amplitude réduite Uc,m

E0
en fonction de la pulsation réduite x = ω

ω0
pour différentes

valeurs du facteur de qualité Q

• pour ω � ω0 x→ 0, l’amplitude est identique à celle de l’excitateur, donc Uc,m

E0
= 1 ;
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• pour x =
…

1− 1
2Q2 et donc ω = ω0

…
1− 1

2Q2 proche de ω0, le système présente un phénomène

de résonance si le facteur de qualité vérifie Q ≥ 1√
2
, et l’amplitude de l’oscillateur est supérieure

à celle de l’excitateur ;
• dans le cas où Q ≥ 3, Uc,m(xr) ' QE0 : l’amplitude à résonance peut prendre des valeurs très

supérieures à celle du forçage. On note également que xr ' 1 c’est-à-dire que la pulsation de
résonance se rapproche de la pulsation propre. Enfin, la largeur du pic de résonance diminue à
mesure que le facteur de qualité augmente : la résonance est plus aigüe ;

• à hautes fréquences, pour x � 1, l’amplitude décroît rapidement : l’inertie du condensateur
l’empêche de suivre les variations de tension aux bornes du générateur.

Pour le système mécanique, l’interprétation est très similaire : à basse fréquence la masse suit le
déplacement du plafond, à haute fréquence l’inertie empêche la masse de suivre le mouvement, et il
existe également une résonance avec les mêmes conditions que pour le système électrique.

Résonance en tension / position

En s’appuyant sur l’analogie électromécanique, il se produit un phénomène similaire dans un
circuit RLC série relié à un générateur basse fréquence avec une résonance en tension pour
la tension aux bornes du condensateur, et une résonance en position pour la position de la
masse dans le cadre d’un oscillateur amorti.
La résonance se produit pour Q >

1√
2
, pour une pulsation de résonance ωr proche de la

pulsation propre ω0. Elle est d’autant plus prononcée que le facteur de qualité est élevée, et pour
Q > 3 ωr ' ω0

c) Étude de la phase
On peut également tracer le déphasage en fonction de la pulsation pour différentes valeurs du

facteur de qualité. Cela confirme bien les observations sur le système masse-ressort : le mouvement est
en phase à basse fréquence, se retarde progressivement (car ϕ < 0), et finit en opposition de phase à
haute fréquence. À noter que la variation de phase autour de ω = ω0 est d’autant plus grande que le
facteur de qualité est grand.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−150

−100

−50

0

x

ϕ

Q = 6 Q = 3
Q = 2 Q = 1
Q = 0.71 Q = 0.2
Q = 0.1 Q = 0.05

Figure 6.2 – Déphasage en fonction de la pulsation réduite x = ω

ω0
pour différentes valeurs du

facteur de qualité Q

Notons aussi que le déphasage passe toujours par −π/2 quand x = 1, soit quand ω = ω0. Cela peut
en particulier être un moyen de mesurer expérimentalement ω0 pour des valeurs de Q inférieures à
3.

d) Étude asymptotique
Considérons les limites pour ω � ω0, ω = ω0 et ω � ω0 afin de réexprimer l’amplitude complexe :
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*

• pour ω � ω0, ω2
0 − ω2 + j

ωω0

Q
' ω2

0 donc :

U c,m '
ω2

0E0

ω2
0

= E0 =⇒ Uc,m = E0 et ϕ = 0 (6.24)

donc uc(t) ' e(t) c’est-à-dire que la tension aux bornes du condensateur est identique à celle
du générateur ;

*

• pour ω = ω0, ω2
0 − ω2 + j

ωω0

Q
= j

ω2
0
Q

donc :

U c,m = ω2
0E0

j
ω2

0
Q

= −jQE0 =⇒ Uc,m = QE0 et ϕ = −π2 (6.25)

d’où le déphasage déjà remarqué sur la figure 7.6 et l’amplitude en sortie peut prendre des
valeurs très supérieures à E0 si Q� 1 d’où le phénomène potentiel de résonance ;

• pour ω � ω0, ω2
0 − ω2 + j

ωω0

Q
' −ω2 donc :

U c,m '
ω2

0E0

−ω2 =⇒ Uc,m = ω2
0
ω2E0 � E0 et ϕ = ±π (6.26)

donc la tension aux bornes du condensateur est en opposition de phase par rapport à celle
du générateur, et d’amplitude bien plus faible, synonyme d’une atténuation importante : le
condensateur ne suit plus les variations du générateur efficacement.

III.3 Résonance en vitesse / courant
a) Expression des grandeurs associées
i) Vitesse

*

À partir de l’amplitude complexe de la position, on peut exprimer celle sur la vitesse. v(t) = dZ
dt

donc v = jωZ, d’où V m = jωZm

V m = jωaω2
0

ω2
0 + (jω)2 + j

ωω0

Q

= aω0Q
Qω0

jω
+ Qjω

ω0
+ 1

= V0

1 + jQ

Å
ω

ω0
− ω0

ω

ã (6.27)

en divisant par j ωω0

Q
et en posant V0 = aω0Q = ka

α
.

ii) Intensité électrique

Au sein du circuit RLC série, i(t) = C
du
dt , donc en complexe i = jωCu d’où Im = jωUm. Par

conséquent on trouve de la même façon :

Im = I0

1 + jQ

Å
ω

ω0
− ω0

ω

ã (6.28)

en posant I0 = E0

R

b) Étude de la résonance en intensité/ en vitesse
À partir de l’équation exprimant l’amplitude complexe du courant, on peut calculer l’amplitude de

l’intensité en régime permanent (mais le raisonnement serait identique pour la résonance en vitesse) :

Im = I0∣∣∣∣1 + jQ

Å
ω

ω0
− ω0

ω

ã∣∣∣∣ = I0 
1 +Q2

Å
x− 1

x

ã2
(6.29)

où l’on pose I0 = E0

R
et x = ω

ω0
la pulsation réduite.

Sans faire de calcul de dérivée, le dénominateur possède bien un minimum en x = 1 : en effet dans
la racine, on a une somme de deux termes positifs, et le deuxième s’annule uniquement en x = 1.
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Il vient donc que l’amplitude de l’intensité possède quelle que soit la valeur de Q un maximum pour
x = 1, c’est-à-dire que pour ω = ω0 il y aura toujours une résonance en courant, illustrée ci-dessous :

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.5

0

0.5

1

u

I m I 0

Q = 6 Q = 3 Q = 2 Q = 1
Q = 0.71 Q = 0.2 Q = 0.1 Q = 0.05

Figure 6.3 – Amplitude réduite de l’intensité Im

I0
en fonction de la pulsation réduite u = ω

ω0
pour

différentes valeurs du facteur de qualité mécanique Q

*

On constate ainsi que l’amplitude du courant est limitée à I0, mais également que plus le facteur
de qualité est important, plus la résonance est aigüe, c’est-à-dire resserrée autour de ω = ω0. On

montre même que la largeur du pic de résonance, pour Im = I0√
2
vaut ∆ω = ω0

Q
, ce qui donne

un sens physique complémentaire au facteur de qualité.

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

∆ω
1√
2

u

I m I 0

Figure 6.4 – Amplitude réduite du courant en fonction de la pulsation ω pour Q = 3 et la largeur du
pic de résonance.

A retenir

L’évolution de la vitesse de la masse en régime forcé passe toujours par un maximum en ω = ω0.
On parle de résonance en vitesse, la situation étant identique à la résonance en intensité d’un
circuit RLC série. La largeur de résonance vérifie ∆ω = ω0

Q
: le facteur de qualité mécanique

permet de caractériser l’acuité de la résonance.
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IV. Utilisation des impédances complexes en régime sinusoïdal
forcé

IV.1 Notion d’impédance électrique

a) Définition
En régime formé, on peut étudier les circuits électriques en introduisant une généralisation de la

notion de résistance.

Définition

*

On appelle impédance complexe d’un dipôle, notée Z, le rapport :

Z = u

i
(6.30)

où u est la tension (complexe) aux bornes de ce dipôle en régime forcé, et i le courant le
traversant. Elle s’exprime également en ohm.

b) Impédances des composants usuels

*

Pour une résistance, la relation u = Ri est inchangée lors du passage en notations complexes, donc

ZR = R ; pour un condensateur, on a la relation i = C
du
dt , soit en notation complexe i = Cjωu

et donc l’impédance associée est ZC = 1
jCω

; de même pour une bobine, avec u = L
di
dt , il

vient ZL = jLω .

On peut effectuer comme pour des résistances des associations en série ou en dérivation suivant
les mêmes relations :

• en série on somme les impédances : Zeq =
∑

i

Zi ;

• en dérivation on somme les inverses des impédances, encore appelées admittances :

1
Zeq

=
∑

i

1
Zi

c) Comportement asymptotique des dipôles
Les impédances nous permettent d’en déduire le comportement aux « basses » et aux « hautes »

fréquences :

• pour ω → 0, |ZC| → +∞ et |ZL| → 0, correspondant à ce qui avait été énoncé au chapitre SP6
à savoir que le condensateur se comporte comme un interrupteur ouvert (ou une résistance de
valeur infinie), et la bobine comme un fil ;

• pour ω → +∞, |ZC| → 0 et |ZL| → +∞, ce qui signifie que le condensateur se comporte comme
un fil aux hautes fréquences et la bobine comme un interrupteur ouvert.

Ces dernières affir-
mations peuvent se
comprendre qualita-
tivement : la bobine
n’autorise pas des
changements d’in-
tensité trop rapides
dans la branche
dans laquelle elle se
trouve, par des effets
inductifs, tandis que
le condensateur n’a
plus le temps de se
charger ou déchar-
ger et la tension
à ses bornes reste
constamment nulle.

IV.2 Retour au cas du circuit RLC série
On cherche à étudier le comportement du courant dans le circuit RLC série. Pour obtenir l’intensité

en régime forcé, il convient d’exprimer la tension aux bornes de la résistance. À l’aide de la formule du
pont diviseur de tension, elle vaut :
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*

uR(t) = Ri(t) =
ZR

ZR + ZL + ZC
e(t) = R

R+ jLω + 1
jCω

E0e
jωt (6.31)

En simplifiant par R et en posant i(t) = Ime
jωt+ϕ = Ime

jωt, l’amplitude complexe de l’intensité
se réécrit

Im = E0

R+ jLω + 1
jCω

=

e0

R

1 + jQ

Å
ω

ω0
− ω0

ω

ã (6.32)

où l’on utilise la définition de Q et ω0 déterminée précédemment : R
L

= ω0

Q
et ω2

0 = 1
LC

donc

Qω0 = L

R
ω2

0 = 1
RC

.

Exercice
Déterminer par la même méthode la tension aux bornes du condensateur et retrouver l’expression
obtenue grâce à l’équation différentielle.

On applique à nouveau la relation du pont diviseur, mais aux bornes du condensateur :

uc = ZC
ZC + ZL +R

e =

1
jCω

1
jCω

+ jLω +R
E0e

jωt (6.33)

conduisant à l’amplitude complexe :

U c,m = ω2
0E0

ω2
0 − ω2 + j

ωω0

Q

(6.34)

IV.3 Passage d’une équation complexe à une équation différentielle
En utilisant les impédances, on s’affranchit ici d’écrire une équation différentielle. Mais il est même

possible de faire le travail inverse et de retrouver l’équation différentielle régie par i(t). Repartons de
l’équation complexe reliant i(t) et e(t). Il faut faire en sorte de n’avoir que des polynômes en jω, et
éliminer les fractions :

*

i(t) = e(t)

R+ jLω + 1
jCω

= jCωe(t)
jRCω − LCω2 + 1 (6.35)

soit encore (
LC(jω)2 + jRCω + 1

)
i(t) = jCωe(t) (6.36)

puis, avec le fait que multiplier par jω revient à effectuer une dérivée temporelle :

LC
d2i

dt2 +RC
di
dt + i = C

de
dt (6.37)

soit sous forme canonique :

d2i

dt2 + ω0

Q

di
dt + ω2

0i = 1
L

de
dt (6.38)

La notation complexe peut donc être un moyen commode pour déterminer une équation différentielle
a priori difficile à obtenir (plusieurs mailles, par exemple).
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Exercices
6.1 Circuit RL en régime forcé

On considère un circuit RL série alimenté par une tension sinusoïdale e(t) = E cos(ωt).

1. Écrire l’équation différentielle vérifiée par le courant traversant le circuit à partir de la loi des mailles.

2. À partir de l’équation différentielle, injecter la forme complexe pour obtenir i.

3. À partir d’une méthode faisant intervenir les impédances complexes, retrouver le résultat.

4. Donner la solution temporelle correspondant à cette solution complexe. On déterminera l’amplitude et le
déphasage. Commenter leur dépendance en fréquence.

6.2 Impédances équivalentes
1. Pour les circuits suivants, déterminer les impédances équivalentes (pour le circuit (c), considérer le dipôle

branché au générateur).

R
(L,r) E

R2

R1

L

I

C

(a)

R

(L,r)

(b) (c)

2. Pour le circuit de droite, quelle est la condition sur les valeurs des composants de sorte que le courant parcouru
dans R1 soit en phase avec la tension aux bornes du générateur ?

• 2) La condition de déphasage nul entre i et e se répercute sur l’impédance équivalente à C, L et R2. Cette impédance
équivalente doit être réelle, donc la partie imaginaire est nulle.

6.3 Mesure des caractéristiques d’une bobine par équilibrage d’un pont
Pour déterminer les caractéristiques d’une bobine réelle, modélisée par l’associa-
tion série d’une inductance idéale L et d’une résistance r, on place celle-ci dans
une structure en pont alimentée par une tension sinusoïdale.

1. Exprimer la tension complexe UAB qui s’applique aux bornes du voltmètre.

2. La capacité C du condensateur et la résistance R sont ajustables. On choisit
leur valeur de sorte à annuler la tension lue par le voltmètre. Déterminer
l’expression de l’inductance L et de la résistance r en fonction de R, C, R1
et R2.

e(t) AB
r

R2

R1

V

L

CR

• 1) Utiliser un pont diviseur de tension pour trouver la tension aux bornes de R2 et aux bornes de R ‖ C. Comment
obtient-on alors UAB ?

• 2) L’égalité de deux complexes revient à écrire l’égalité des parties réelles et des parties imaginaires respectives.

6.4 Circuit en régime sinusoïdal

Considérons le montage ci-dessous, alimenté par une source de tension sinusoïdale de fém e(t) = Em cos(ωt).
On note i(t) = Im cos(ωt+ φ) le courant circulant dans le condensateur de capacité C.
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e R

L i

C

1. Déterminer l’expression complexe du courant i.
2. En déduire Im et φ.
3. Déterminer à partir de la question 1) l’équation différentielle sur i(t) et en déduire la pulsation propre et le

facteur de qualité.

• 1) Commencer par simplifier le circuit pour trouver la tension aux bornes de l’association R et C en parallèle. Puis utiliser
la loi d’Ohm pour C. Lorsqu’on emploie des impédances d’éléments en dérivation, il peut être judicieux de faire apparaître
l’admittance Y eq =

1
Zeq

afin de simplifier les calculs.

• 3) il faut faire apparaître un polynôme d’ordre 2 en facteur de i et de même (au maximum ordre 2) en facteur de e.

6.5 Étude de la suspension d’un véhicule
Dans le cadre d’un modèle simplifié de suspension, on assimile le véhicule à un point matériel M (de masse

m = 350 kg), posé sur un ressort dont l’autre extrémité R peut se déplacer le long d’une route horizontale ou d’une
route ondulée (par le biais d’une roue de rayon r = 35 cm). Le ressort a une constante de raideur k = 1,29·104 Nm−1

et une longueur `0 = 40 cm à vide.
z

0

zM(t)
M

m

R
zR(t)

r

On repère les positions de M et R par leur altitude zM et zR selon un axe vertical (Oz) tel que zR = r
lorsque la route est horizontale. On note enfin zS(t) l’altitude du sol, initialement nulle. Enfin, on modélise l’effet
de l’amortisseur par un frottement fluide entre les points M et R dont la force résultante sur la masse m est
#»

F d = −α
ÅdzM

dt −
dzR

dt

ã
#»ez, avec α = 700 kg s−1.

1. Lorsque le véhicule se déplace sur la route horizontale (avec zS(t) = 0), déterminer la position à l’équilibre
zM,eq en fonction de m, g, k, `0 et r.

2. Le véhicule rencontre une marche de hauteur h = 10 cm (ainsi zS(t) = +h), on suppose que la longueur de
l’amortisseur est instantanément réduite de la longueur h, et la masse m possède à t = 0+ une vitesse verticale
nulle. Déterminer la forme générale de la loi d’évolution de zM (t) et le nombre d’oscillations observées. Tracer
l’allure de zM (t).

3. Le profil de la route est maintenant une route bosselée modélisée par une courbe sinusoïdale de période spatiale
λ = 5,0m et d’amplitude H = 5 cm. La voiture roule à vitesse constante vx. On pose Z(t) = zM − zM,eq.

(a) Justifier que l’on puisse écrire zs(x) = H cos
Å2π
λ
x

ã
avec x l’abscisse du point M . Exprimer zs en

fonction du temps et non plus de x et en déduire la pulsation ω associée en fonction de la vitesse
horizontale vx du véhicule.
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(b) Montrer que Z(t) vérifie une équation différentielle de la forme

d2Z

dt2 + ω0

Q

dZ
dt + ω2

0Z(t) = F (t)

où F (t) dépend de zS.
(c) On peut montrer que F (t) s’écrit, par un bon choix de l’origine des temps, sous la forme F (t) =

Fm cos(ωt). Justifier que la vitesse v d’oscillation verticale de la voiture est également sinusoïdale de
même pulsation que F .

(d) Montrer alors que son amplitude Vm vérifie

Vm =

FmQ

ω0 
1 +Q2

Å
ω

ω0
− ω0

ω

ã2
(6.39)

(e) On pose H = Vm

Fm
. Tracer l’allure de H en fonction de x = ω

ω0
.

(f) Calculer la vitesse associée à la pulsation ω = ω0 et préciser s’il vaut mieux rouler vite ou lentement sur
ce type de chemin.

• 1) Contrôler les signes au regard de ce qui est attendu physiquement
• 2) Bien obtenir l’équation différentielle et identifier ω0 et Q et les calculer numériquement pour connaître le type de

régime.

• 3) (a) On trouve ω =
2πvx
λ

et zs(t) = H cos(ωt).

• 3) (b) Après changement de variable on aboutit à Z̈ +
ω0

Q
Ż + ω2

0Z = ω2
0zs +

ω0

Q
żs.

1. À l’équilibre, on étudie la masse M dans le référentiel de la route supposé galiléen. Les forces en présence sont
uniquement le poids et la force de rappel élastique. On applique la LQM à l’équilibre :

#»
P + #»

F = #»0 =⇒ −mg + k(zM,eq − zR,eq − `0) = 0⇐⇒ zM,eq = `0 + r − mg

k
(6.40)

2. On cherche à décrire ici la réponse à un équivalent d’échelon de tension pour cet oscillateur mécanique amorti. On écrit
donc l’équation différentielle associée à la position de la masse M . On réécrit la LQM dans ces nouvelles conditions :

d #»p

dt = m #»a = #»
P + #»

F + #»
F d =⇒ mz̈M = −mg − k(zM − zR − `0)− α

Å
dzM

dt −
dzR

dt

ã
(6.41)

soit avec zR = r + h après avoir monté la marche, on peut réécrire l’équation précédente sous forme canonique :

z̈M + α

m
żM + k

m
zM = k

m

(
`0 + r + h− mg

k

)
(6.42)

On peut donc poser ω0 =
…
k

m
et Q = mω0

α
.

La forme générale de la loi d’évolution de zM(t) s’écrit donc :

zM(t) = Ae−µt cos(Ωt+ ϕ) + zM,eq + h (6.43)

avec µ0 = ω0

2Q et Ω = ω0

…
1− 1

4Q2 (que l’on retrouve à partir du polynôme caractéristique). Il n’est pas demandé
de résoudre l’équation, mais au moins de respecter les conditions aux limites pour effectuer un tracé. On précise que
l’amortisseur a une altitude instantanément réduite de h, donc zM(t = 0+) = zM(t = 0−)zM,eq (l’inertie liée au
déplacement horizontal d’une masse importante implique la continuité de l’altitude du véhicule, mais pas de la roue) et
żM(t = 0+) = 0 car on précise que la vitesse verticale est nulle. On calcule ω0 = 6,1 rad s−1 et Q = 3,03 donc Ω ' ω0
et le nombre d’oscillation est d’environ 3.
D’où l’allure suivante, avec une tangente horizontale
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3. (a) zs(x) = H cos(kx) = H cos
Å

2πx
λ

ã
est la forme classique d’un signal sinusoïdal de période spatiale λ. Or, la

vitesse est vx, constante, donc x(t) = vxt d’où :

zs(t) = H cosωt avec ω = 2πvx
λ

(6.44)

(b) Écrivons de nouveau la LQM projetée suivant l’axe vertical, mais en considérant que zR = r + zs :

mz̈M = −mg − k(zM − zR − `0)− α(żM − żR) (6.45)

soit en réorganisant les termes et sous forme canonique :

z̈M + ω0

Q
żM + ω2

0zM = ω2
0

(
r + `0 −

mg

k

)
+ ω2

0zs + ω0

Q
żs (6.46)

En posant Z(t) = zM − zM,eq, on élimine la partie constante du membre de droite, d’où :

Z̈ + ω0

Q
Ż + ω2

0Z = ω2
0zs + ω0

Q
żs = F (t) (6.47)

(c) La position Z est, en régime sinusoïdal forcé, sinusoïdale de même pulsation que le forçage F (t), donc de pulsation
ω. Puis avec v = żM = Ż, la vitesse est également sinusoïdale de pulsation ω.

(d) On passe l’équation précédente en notations complexes, sachant que v = Ż donc V m = jωZm :Å
−ω2 + j

ωω0

Q
+ ω2

0

ã
Z = Fme

jωt =⇒
Å
−ω2 + j

ωω0

Q
+ ω2

0

ã
V m
jω

= Fm (6.48)

donc en isolant V m puis en prenant le module :

V m = Fm

jω + ω0

Q
+ ω2

0
jω

=

FmQ

ω0

1 + jQ
ω

ω0
− jQω0

ω

(6.49)

d’où :

Vm =

FmQ

Q 
1 +Q2

Å
ω

ω0
− ω0

ω

ã2
(6.50)

(e) En introduisant la pulsation réduire x = ω/ω0, il vient :

H(x) =

Q

ω0 
1 +Q2

Å
x− 1

x

ã2
(6.51)

dont l’allure graphique est donnée ci-après.
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(f) vx,0 = ω0λ

2π = 4,9m s−1 = 18 kmh−1. Il vaut donc mieux soit plus lentement, soit plus vite que cette vitesse.
Techniquement, il est difficile de rouler vraiment plus lentement, on a tout intérêt à avoir vx � vx,0 d’après le
graphique de H.
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